Bravo! Mission Accomplished! Succesful landing on Titan!

This is the general tropical discussion area. Anyone can take their shot at predicting a storms path.

Moderator: S2k Moderators

Forum rules

The posts in this forum are NOT official forecasts and should not be used as such. They are just the opinion of the poster and may or may not be backed by sound meteorological data. They are NOT endorsed by any professional institution or STORM2K. For official information, please refer to products from the National Hurricane Center and National Weather Service.

Help Support Storm2K
Message
Author
User avatar
HURAKAN
Professional-Met
Professional-Met
Posts: 46086
Age: 38
Joined: Thu May 20, 2004 4:34 pm
Location: Key West, FL
Contact:

Bravo! Mission Accomplished! Succesful landing on Titan!

#1 Postby HURAKAN » Mon Jan 10, 2005 10:55 pm

Huygens Begins Its Final Journey Into The Unknown

December 25, 2004 -- The European Space Agency’s Huygens probe was successfully released by NASA’s Cassini orbiter early this morning and is now on a controlled collision course toward Saturn’s largest and most mysterious moon, Titan, where on 14 January it will make a descent through one of the most intriguing atmospheres in the solar system to an unknown surface. The separation occurred at 02:00 UTC (03:00 CET): A few minutes after separation, Cassini turned back to Earth and relayed back information about the separation. This signal then took 1 hour and 8 minutes to cross the 1.2 billion kilometres separating the Cassini spacecraft and Earth.

“Today’s release is another successful milestone in the Cassini/Huygens odyssey”, said Dr David Southwood, ESA’s Director of Science Programmes. “This was an amicable separation after seven years of living together. Our thanks to our partners at NASA for the lift. Each spacecraft will now continue on its own but we expect they’ll keep in touch to complete this amazing mission. Now all our hopes and expectations are focused on getting the first in-situ data from a new world we’ve been dreaming of exploring for decades”. Final stage of a seven-year odyssey The Cassini/Huygens mission, jointly developed by NASA, ESA and the Italian space agency (ASI), began on 15 October 1997, when the composite spacecraft were launched from Cape Canaveral, Florida, atop a Titan 4B/Centaur vehicle. Together, the two probes weighed 5548 kg at launch and became the largest space mission ever sent to the outer planets. To gain sufficient velocity to reach Saturn, they had to conduct four gravity-assist manoeuvres by flying twice by Venus, once by the Earth and once by Jupiter. On 1 July Cassini/Huygens eventually became the first spacecraft to enter an orbit around Saturn.

On 17 December, while on its third orbit around the ringed planet, the Cassini orbiter performed a manoeuvre to enter a controlled collision trajectory towards Titan. As planned, a fine tuning of the trajectory took place on 22 December to place Huygens on its nominal entry trajectrory. While Huygens will remain on this trajectory till it plunges into Titan’s atmosphere on 14 January, the orbiter will perform a deflection manoeuvre on 28 December to avoid crashing onto the moon. Today’s separation was achieved by the firing of pyrotechnic devices. Under the action of push-off springs, ramps and rollers, the probe was released at a relative velocity of about 0.3 m/s with a spin rate of 7 rpm. Telemetry data confirming the separation were collected by NASA’s Deep Space Network stations in Madrid, Spain and Goldstone, California, when the telemetry playback signal from Cassini eventually reached the Earth.

The Huygens probe is now dormant and will remain so for its 20-day coast phase to Titan. Four days before its release, a triply-redundant timer was programmed in order to wake-up the probe’s systems shortly before arrival on Titan. Exploring Titan’s atmosphere Huygens is scheduled to enter Titan’s atmosphere at about 09:06 UTC (10:06 CET) on 14 January, entering at a relatively steep angle of 65° and a velocity of about 6 km/s. The target is over the southern hemisphere, on the day side. Protected by an ablative thermal shield, the probe will decelerate to 400 m/s within 3 minutes before it deploys a 2.6 m pilot chute at about 160 km. After 2.5 seconds this chute will pull away the probe’s aft cover and the main parachute, 8.3 m in diameter, will deploy to stabilise the probe. The front shield will then be released and the probe, whose main objective is to study Titan’s atmosphere, will open inlet ports and deploy booms to collect the scientific data. All instruments will have direct access to the atmosphere to conduct detailed in-situ measurements of its structure, dynamics and chemistry. Imagery of the surface along the track will also be acquired. These data will be transmitted directly to the Cassini orbiter, which, at the same time, will be flying over Titan at 60 000 km at closest approach. Earth-based radiotelescopes will also try to detect the signal’s tone directly. After 15 minutes, at about 120 km, Huygens will release its main parachute and a smaller 3 m drogue chute will take over to allow a deeper plunge through the atmosphere within the lifetime of the probe’s batteries.

The descent will last about 140 minutes before Huygens impacts the surface at about 6 m/s. If the probe survives all this, its extended mission will start, consisting in direct characterisation of Titan’s surface for as long as the batteries can power the instruments and the Cassini orbiter is visible over the horizon at the landing site, i.e. not more than 130 minutes.

At that time, the Cassini orbiter will reorient its main antenna dish toward Earth in order to play back the data collected by Huygens, which will be received by NASA’s 70-m diameter antenna in Canberra, Australia, 67 minutes later. Three playbacks are planned, to ensure that all recorded data are safely transmitted to Earth. Then Cassini will continue its mission exploring Saturn and its moons, which includes multiple additional flybys of Titan in the coming months and years.

A probe deep into space and time Bigger than Mercury and slightly smaller than Mars, Titan is unique in having a thick hazy nitrogen-rich atmosphere containing carbon-based compounds that could yield important clues about how Earth came to be habitable. The chemical makeup of the atmosphere is thought to be very similar to Earth’s before life began, although colder (-180°C) and so lacking liquid water. The in-situ results from Huygens, combined with global observations from repeated flybys of Titan by the Cassini orbiter, are thus expected to help us understand not only one of the most exotic members of our Solar System but also the evolution of the early Earth's atmosphere and the mechanisms that led to the dawn of life on our planet.

Europe’s main contribution to the Cassini mission, the Huygens probe, was built for ESA by an industrial team led by Alcatel Space. This 320 kg spacecraft is carrying six science instruments to study the atmosphere during its descent. Laboratories and research centres from all ESA member countries, the United States, Poland and Israel have been involved in developing this science payload. The Huygens atmospheric structure instrument package (HASI) will measure temperature and pressure profiles, and characterise winds and turbulences. It will also be able to detect lightning and even to measure the conductivity and permittivity of the surface if the probe survives the impact. The gas chromatograph mass spectrometer (GCMS) will provide fine chemical analysis of the atmosphere and the aerosols collected by the aerosol collector and pyrolyser (ACP). The descent imager/spectral radiometer (DISR) will collect images, spectra and other data on the atmosphere, the radiation budget, cloud structures, aerosols and the surface. The doppler wind experiment (DWE) will provide a zonal wind profile while the surface science package (SSP) will characterise the landing site if Huygens survives the impact.

The Cassini-Huygens mission is a cooperation between NASA, the European Space Agency and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA’s Office of Space Science, Washington. JPL designed, developed and assembled the Cassini orbiter.

Image
This is an artist's impression of the Huygens probe entering the upper layers of Titan's atmosphere at 22 000 kilometres per hour. It slows to about 1400 kilometres per hour in less than two minutes, thanks to the friction of the front heatshield with the atmospheric gas. The temperature of the gas in the shock wave in front of the heatshield may reach 12 000°C, with the shield itself reaching 1800°C. (Credits: ESA-D. DUCROS)

I'm just thrill to see what is going to be unfolded!
Last edited by HURAKAN on Fri Jan 14, 2005 4:54 pm, edited 3 times in total.
0 likes   

User avatar
James
Category 5
Category 5
Posts: 1531
Joined: Tue Aug 24, 2004 10:29 am
Location: Gloucestershire, England
Contact:

#2 Postby James » Tue Jan 11, 2005 11:30 am

It's going to be fascinating to see what Titan reveals!
0 likes   

User avatar
Hurricanehink
S2K Supporter
S2K Supporter
Posts: 2044
Joined: Sun Nov 16, 2003 2:05 pm
Location: New Jersey

#3 Postby Hurricanehink » Tue Jan 11, 2005 3:38 pm

WOW! I read about this a while ago and never thought anything of it, but we'll finally see the moon.
0 likes   

User avatar
James
Category 5
Category 5
Posts: 1531
Joined: Tue Aug 24, 2004 10:29 am
Location: Gloucestershire, England
Contact:

#4 Postby James » Tue Jan 11, 2005 3:48 pm

A documentary ran on the BBC called "The Planets" in 1999. They spoke about this probe on it, and 2005 sounded so distant back then. I can't believe that it's here.
0 likes   

User avatar
HURAKAN
Professional-Met
Professional-Met
Posts: 46086
Age: 38
Joined: Thu May 20, 2004 4:34 pm
Location: Key West, FL
Contact:

#5 Postby HURAKAN » Thu Jan 13, 2005 3:59 pm

Scientists Prepare For Huygens Descent On Titan

January 4, 2005 -- University of Arizona scientists, working on one of the most stunning robotic space missions ever attempted, head for Germany next week.

Their experiments ride on the Huygens probe to Saturn's giant moon, Titan, part of the four-year NASA/European Space Agency/Italian Space Agency Cassini Huygens mission to the Saturn system.

The probe separated from the Cassini spacecraft early Saturday, Dec. 25, 2004, central European time (or about 8:30 p.m. Dec. 24, Arizona time). Huygens is now on its 14,000 mile-per-hour, 20-day cruise toward Titan. The probe will parachute onto Titan's surface on Jan. 14 - the most distant touchdown any human-made object will have ever made in the solar system.

The European Space Agency (ESA), which owns and manages the Huygens probe, controls probe operations at the European Space Operations Center (ESOC) in Darmstadt, Germany. About a dozen UA researchers (listed below) will join their international colleagues in Darmstadt, which is near Frankfurt, for adrenalin-charged science operations on Jan. 14 and 15.

Titan - a world larger than Mercury and Pluto - is the only moon in the solar system with an atmosphere. Its mostly nitrogen atmosphere may resemble Earth's before life began. Scientists theorize that methane rains from Titan's sky, creating surface methane or ethane lakes, which may give rise to clouds, similar to the water cycle on Earth.

Scientists will study Titan's thick atmosphere, clouds and virtually unseen surface with six science experiments on Huygens during the probe's roughly 2.5-hour descent.

Martin Tomasko of the UA's Lunar and Planetary Laboratory (LPL) leads the international team with the only optical instrument on the probe. Tomasko and eight other LPL researchers, plus their colleagues, will be at ESOC analyzing data from the Descent Imager/Spectral Radiometer (DISR). DISR will study aerosol particles in Titan's atmosphere and take photographs of the surface for more than two hours as the probe spins downward. Huygens will relay data to the Cassini orbiter, which then transmits the signals to NASA's Deep Space Network. It takes 67 minutes for Cassini's signals to reach Earth.

UA planetary sciences Professor Jonathan I. Lunine is one of three interdisciplinary scientists on the Huygens probe. LPL Research Associate Ralph D. Lorenz, author of the book "Lifting Titan's Veil" and member of the Cassini radar team, is a co-investigator on the Surface Science Package. Planetary sciences Regents' Professor Donald M. Hunten is a co-investigator on Huygen's Gas Chromatograph-Mass Spectrometer.

The Descent Scenario

A system of alarm clocks will wake Huygens at a pre-programmed time a few hours before it slams into Titan's outermost atmosphere, more than 800 miles (1,270 kilometers) above Titan's surface.

During the first three minutes inside the atmosphere, Huygens must decelerate from more than 13,000 mph (21,000 kph) to 1,100 mph (1,800 kph). Temperatures on the face of Huygens' heat shield are expected to soar from 300 degrees below zero to more than 3,000 degrees Fahrenheit (minus 150 degrees to plus 1,800 degrees Celsius).

After Huygens hits the atmosphere at about 110 miles (180 km) above Titan's surface, robotic controls will open a pilot parachute to pull out the 27-foot (8.3 meter) main parachute at a speed of about 1,100 miles per hour (1,500 kph). Within a minute, the speed will drop to about 200 mph (320 kph).

The shell of the entry assembly module will then fall away, exposing the scientific instruments at about 100 miles (160 kilometers) above Titan's surface. Scientists estimate that the atmospheric temperature at this altitude is minus 250 degrees Fahrenheit (minus 120 degrees Celsius). DISR will begin taking images 93 miles (150 km) above the surface.

At about 75 miles (120 km ) altitude, Huygens will jettison its main parachute and deploy a third, 10-foot-diameter (3-meter-diameter) parachute for the remainder of the descent. Instruments should continue taking data for another 2 hours and 15 minutes and perhaps more.

Scientists hope that DISR will emerge from the thick Titan haze layer at about 43 miles (70 km) above the surface for clear views down. The probe will hit the coldest layer of the atmosphere, the tropopause, at about 28 miles (45 kilometers), where expected temperatures hover around minus 390 degrees Fahrenheit (minus 200 degrees Celsius).

DISR's three cameras will take about 750 images, or 250 "triplet" images, as the probe spirals toward Titan's surface. The DISR team will mosaic these images into 20 panoramic views of the ground and horizon in various resolutions.

At an altitude of 12 miles (20 km), all DISR data are relayed back to the Cassini orbiter to ensure that it won't be lost on touchdown impact.

At 6 miles and 3 miles (10 km and 5 km), DISR will take light spectra reflected from Titan's surface. The team will create a spectral map to determine the color and, from that, the composition of surface features.

At two-fifths of a mile (700 meters) above the surface, a 20-watt lamp on DISR will switch on and replace the colors of sunlight filtered out by Titan's atmospheric methane.

The probe has enough battery power for instruments to continue taking data for more than 30 minutes on Titan's surface -- if they survive landing. The force of landing will be like "riding your bicycle into a brick wall," said DISR team leader Martin Tomasko. The Cassini orbiter can receive Huygens ground data until it travels beyond Titan's horizon.

First Huygens Views and Results from Titan

The DISR team expects to receive its first dataset after 8 p.m. on Friday, Jan. 14, (Central European time). Bashar Rizk coordinates the DISR team that plans to produce a first panorama and perhaps even a simple movie during the early morning hours of Jan. 15. At the same time, Martin Tomasko and others will be analyzing data on atmospheric particles for their preliminary report on Titan's atmosphere.

The DISR team will release its first results at a Jan. 15 morning news conference at ESOC, where the European Space Agency is focusing media activities.

Those results also will be released Jan. 15 in Tucson, Ariz., at an evening public program in the Kuiper Space Sciences Building on the UA campus. LPL's David Kring, director of the NASA/University of Arizona Space Imagery Center, and DISR team member Lyn Doose will present first DISR results at the program, "Descending to a New World." Kring also is organizing a program for Saturday, Jan. 22, that will feature talks by Martin Tomasko and Jonathan Lunine, just back from ESOC. (Details on these events will be outlined in separate UA News releases.)

The DISR Intrument

DISR has many individual instruments to measure the makeup of atmospheric aerosol particles and take images of the Titan's surface. These are upward and downward looking violet photometers, a four-channel solar aureole camera, upward and downward looking visible and infrared spectrometers, surface science lamp, sun sensor and a three-channel imaging system.

The imaging system has a high-resolution imager, a medium-resolution imager and a side-viewing imager. Images from each of the three cameras are combined into a "triplet." Triplets are combined with other triplets to create mosaics, or panoramic views, of the surface.

Before it was launched, the imaging system was tested at a fire tower in the Santa Catalina Mountains north of Tucson, from the LPL rooftop on the UA campus and on helicopter flights over the town of Red Rock, Ariz., north of Tucson, and over Patagonia Lake, south of Tucson. Mosaics created in these tests gave researchers a good estimate of how the camera should perform during the Titan descent and will help them interpret DISR images.

There are actually several DISR flight-ready units - the one launched on the Huygens probe, a second flight model in Germany and a third replica instrument used at LPL in lab tests - and a fourth engineering DISR model.

Image
Artist's rendition of Huygens probe landing on Titan, January 2005. (Illustration: NASA/JPL)
0 likes   

User avatar
HURAKAN
Professional-Met
Professional-Met
Posts: 46086
Age: 38
Joined: Thu May 20, 2004 4:34 pm
Location: Key West, FL
Contact:

#6 Postby HURAKAN » Fri Jan 14, 2005 4:53 pm

Image

This is one of the first raw or unprocessed images from the European Space Agency's Huygens probe as it descended to Saturn's moon Titan. It was taken with the Descent Imager/Spectral Radiometer, one of two NASA instruments on the probe.

It seems to be a shoreline and channels.
0 likes   

User avatar
The Big Dog
Category 5
Category 5
Posts: 1039
Joined: Sat Aug 14, 2004 8:30 am
Location: West Palm Beach, FL

#7 Postby The Big Dog » Fri Jan 14, 2005 6:57 pm

This is the first pic I've seen from the surface. Looks a lot like Mars...

Image
0 likes   

User avatar
P.K.
Professional-Met
Professional-Met
Posts: 5149
Joined: Thu Sep 23, 2004 5:57 pm
Location: Watford, England
Contact:

#8 Postby P.K. » Sat Jan 15, 2005 6:45 am

0 likes   

User avatar
HURAKAN
Professional-Met
Professional-Met
Posts: 46086
Age: 38
Joined: Thu May 20, 2004 4:34 pm
Location: Key West, FL
Contact:

#9 Postby HURAKAN » Tue Jan 18, 2005 5:51 pm

Huygens lands in Titanian mud

Image

18 January 2005
Although Huygens landed on Titan's surface on 14 January, activity at ESA's European Space Operations Centre (ESOC) in Darmstadt, Germany, continues at a furious pace. Scientists are still working to refine the exact location of the probe's landing site, seen above.

While Huygens rests frozen at -180 degrees Celsius on Titan's landscape, a symbolic finale to the engineering and flight phase of this historic mission, scientists have taken little time off to eat or sleep.
They have been processing, examining and analysing data, and sometimes even dreaming about it when they sleep. There's enough data to keep Huygens scientists busy for months and even years to come.

One of the most interesting early results is the descent profile. Some 30 scientists in the Descent Trajectory Working Group are working to recreate the trajectory of the probe as it parachuted down to Titan's surface.

The descent profile provides the important link between measurements made by instruments on the Huygens probe and the Cassini orbiter. It is also needed to understand where the probe landed on Titan. Having a profile of a probe entering an atmosphere on a Solar System body is important for future space missions.

After Huygens' main parachute unfurled in the upper atmosphere, the probe slowed to a little over 50 metres per second, or about the speed you might drive on a motorway.

In the lower atmosphere, the probe decelerated to approximately 5.4 metres per second, and drifted sideways at about 1.5 metres per second, a leisurely walking pace.

"The ride was bumpier than we thought it would be," said Martin Tomasko, Principal Investigator for the Descent Imager/Spectral Radiometer (DISR), the instrument that provided Huygens' stunning images among other data.

The probe rocked more than expected in the upper atmosphere. During its descent through high-altitude haze, it tilted at least 10 to 20 degrees. Below the haze layer, the probe was more stable, tilting less than 3 degrees.

Tomasko and others are still investigating the reason for the bumpy ride and are focusing on a suspected change in wind profile at about 25 kilometres altitude.

The bumpy ride was not the only surprise during the descent.

Landing with a splat

Scientists had theorised that the probe would drop out of the haze at between 70 and 50 kilometres. In fact, Huygens began to emerge from the haze only at 30 kilometres above the surface.

When the probe landed, it was not with a thud, or a splash, but a 'splat'. It landed in Titanian 'mud'.

"I think the biggest surprise is that we survived landing and that we lasted so long," said DISR team member Charles See. "There wasn't even a glitch at impact. That landing was a lot friendlier than we anticipated."

DISR's downward-looking High Resolution Imager camera lens apparently accumulated some material, which suggests the probe may have settled into the surface. "Either that, or we steamed hydrocarbons off the surface and they collected onto the lens," said See.

"The probe's parachute disappeared from sight on landing, so the probe probably isn't pointing east, or we would have seen the parachute," said DISR team member Mike Bushroe.

When the mission was designed, it was decided that the DISR's 20-Watt landing lamp should turn on 700 metres above the surface and illuminate the landing site for as long as 15 minutes after touchdown.

"In fact, not only did the landing lamp turn on at exactly 700 metres, but also it was still shining more than an hour later, when Cassini moved beyond Titan's horizon for its ongoing exploratory tour of the giant moon and the Saturnian system," said Tomasko.
0 likes   


Return to “Talkin' Tropics”

Who is online

Users browsing this forum: Lizzytiz1, Wein and 169 guests